Bootstrapping Self-Organizing Maps to assess the statistical significance of local proximity
نویسندگان
چکیده
One of the attractive features of Self-Organising Maps (SOM) is the so-called “topological preservation property”: observations that are close to each other in the input space (at least locally) remain close to each other in the SOM. In this work, we propose the use of a bootstrap scheme to construct a statistical significance test of the observed proximity among individuals in the SOM. While computer intensive at this stage, this work represents a first step in the exploration of the sampling distribution of proximities in the framework of the SOM algorithm.
منابع مشابه
A Statistical Tool to Assess the Reliability of Self- Organizing Maps
Making results reliable is one of the major concerns in artificial neural networks research. It is often argued that Self-Organizing Maps are less sensitive than other neural paradigms to problems related to convergence, local minima, etc. This paper introduces objective statistical measures that can be used to assess the stability of the results of SOM, both on the distortion and on the topolo...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملStatistical tools to assess the reliability of self-organizing maps
Results of neural network learning are always subject to some variability, due to the sensitivity to initial conditions, to convergence to local minima, and, sometimes more dramatically, to sampling variability. This paper presents a set of tools designed to assess the reliability of the results of self-organizing maps (SOM), i.e. to test on a statistical basis the confidence we can have on the...
متن کاملLabel Propagation for Semi-Supervised Learning in Self-Organizing Maps
Semi-supervised learning aims at discovering spatial structures in high-dimensional input spaces when insufficient background information about clusters is available. A particulary interesting approach is based on propagation of class labels through proximity graphs. The Emergent Self-Organizing Map (ESOM) itself can be seen as such a proximity graph that is suitable for label propagation. It t...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کامل